Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Med Virol ; 95(5): e28788, 2023 05.
Article in English | MEDLINE | ID: covidwho-2326003

ABSTRACT

Diagnosis by rapid antigen tests (RATs) is useful for early initiation of antiviral treatment. Because RATs are easy to use, they can be adapted for self-testing. Several kinds of RATs approved for such use by the Japanese regulatory authority are available from drug stores and websites. Most RATs for COVID-19 are based on antibody detection of the SARS-CoV-2 N protein. Since Omicron and its subvariants have accumulated several amino acid substitutions in the N protein, such amino acid changes might affect the sensitivity of RATs. Here, we investigated the sensitivity of seven RATs available in Japan, six of which are approved for public use and one of which is approved for clinical use, for the detection of BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1, as well as the delta variant (B.1.627.2). All tested RATs detected the delta variant with a detection level between 7500 and 75 000 pfu per test, and all tested RATs showed similar sensitivity to the Omicron variant and its subvariants (BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1). Human saliva did not reduce the sensitivity of the RATs tested. Espline SARS-CoV-2 N showed the highest sensitivity followed by Inspecter KOWA SARS-CoV-2 and V Trust SARS-CoV-2 Ag. Since the RATs failed to detect low levels of infectious virus, individuals whose specimens contained less infectious virus than the detection limit would be considered negative. Therefore, it is important to note that RATs may miss individuals shedding low levels of infectious virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Amino Acid Substitution , Antiviral Agents
2.
J Med Imaging (Bellingham) ; 9(6): 066003, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2253995

ABSTRACT

Purpose: We propose a method to identify sensitive and reliable whole-lung radiomic features from computed tomography (CT) images in a nonhuman primate model of coronavirus disease 2019 (COVID-19). Criteria used for feature selection in this method may improve the performance and robustness of predictive models. Approach: Fourteen crab-eating macaques were assigned to two experimental groups and exposed to either severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or a mock inoculum. High-resolution CT scans were acquired before exposure and on several post-exposure days. Lung volumes were segmented using a deep-learning methodology, and radiomic features were extracted from the original image. The reliability of each feature was assessed by the intraclass correlation coefficient (ICC) using the mock-exposed group data. The sensitivity of each feature was assessed using the virus-exposed group data by defining a factor R that estimates the excess of variation above the maximum normal variation computed in the mock-exposed group. R and ICC were used to rank features and identify non-sensitive and unstable features. Results: Out of 111 radiomic features, 43% had excellent reliability ( ICC > 0.90 ), and 55% had either good ( ICC > 0.75 ) or moderate ( ICC > 0.50 ) reliability. Nineteen features were not sensitive to the radiological manifestations of SARS-CoV-2 exposure. The sensitivity of features showed patterns that suggested a correlation with the radiological manifestations. Conclusions: Features were quantified and ranked based on their sensitivity and reliability. Features to be excluded to create more robust models were identified. Applicability to similar viral pneumonia studies is also possible.

3.
Journal of medical imaging (Bellingham, Wash) ; 9(6), 2022.
Article in English | EuropePMC | ID: covidwho-2156609

ABSTRACT

. Purpose We propose a method to identify sensitive and reliable whole-lung radiomic features from computed tomography (CT) images in a nonhuman primate model of coronavirus disease 2019 (COVID-19). Criteria used for feature selection in this method may improve the performance and robustness of predictive models. Approach Fourteen crab-eating macaques were assigned to two experimental groups and exposed to either severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or a mock inoculum. High-resolution CT scans were acquired before exposure and on several post-exposure days. Lung volumes were segmented using a deep-learning methodology, and radiomic features were extracted from the original image. The reliability of each feature was assessed by the intraclass correlation coefficient (ICC) using the mock-exposed group data. The sensitivity of each feature was assessed using the virus-exposed group data by defining a factor R that estimates the excess of variation above the maximum normal variation computed in the mock-exposed group. R and ICC were used to rank features and identify non-sensitive and unstable features. Results Out of 111 radiomic features, 43% had excellent reliability ( Conclusions Features were quantified and ranked based on their sensitivity and reliability. Features to be excluded to create more robust models were identified. Applicability to similar viral pneumonia studies is also possible.

4.
J Infect Dis ; 226(11): 1897-1902, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2135321

ABSTRACT

BACKGROUND: The consequences of past coronavirus disease 2019 (COVID-19) infection for personal and population health are emerging, but accurately identifying distant infection is a challenge. Anti-spike antibodies rise after both vaccination and infection and anti-nucleocapsid antibodies rapidly decline. METHODS: We evaluated anti-membrane antibodies in COVID-19 naive, vaccinated, and convalescent subjects to determine if they persist and accurately detect distant infection. RESULTS: We found that anti-membrane antibodies persist for at least 1 year and are a sensitive and specific marker of past COVID-19 infection. CONCLUSIONS: Thus, anti-membrane and anti-spike antibodies together can differentiate between COVID-19 convalescent, vaccinated, and naive states to advance public health and research.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Vaccination , Public Health , Virion , Antibodies, Viral , Spike Glycoprotein, Coronavirus
6.
PLoS Pathog ; 18(10): e1010636, 2022 10.
Article in English | MEDLINE | ID: covidwho-2079775

ABSTRACT

Wastewater-based epidemiology (WBE) is an effective way of tracking the appearance and spread of SARS-COV-2 lineages through communities. Beginning in early 2021, we implemented a targeted approach to amplify and sequence the receptor binding domain (RBD) of SARS-COV-2 to characterize viral lineages present in sewersheds. Over the course of 2021, we reproducibly detected multiple SARS-COV-2 RBD lineages that have never been observed in patient samples in 9 sewersheds located in 3 states in the USA. These cryptic lineages contained between 4 to 24 amino acid substitutions in the RBD and were observed intermittently in the sewersheds in which they were found for as long as 14 months. Many of the amino acid substitutions in these lineages occurred at residues also mutated in the Omicron variant of concern (VOC), often with the same substitutions. One of the sewersheds contained a lineage that appeared to be derived from the Alpha VOC, but the majority of the lineages appeared to be derived from pre-VOC SARS-COV-2 lineages. Specifically, several of the cryptic lineages from New York City appeared to be derived from a common ancestor that most likely diverged in early 2020. While the source of these cryptic lineages has not been resolved, it seems increasingly likely that they were derived from long-term patient infections or animal reservoirs. Our findings demonstrate that SARS-COV-2 genetic diversity is greater than what is commonly observed through routine SARS-CoV-2 surveillance. Wastewater sampling may more fully capture SARS-CoV-2 genetic diversity than patient sampling and could reveal new VOCs before they emerge in the wider human population.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Wastewater , COVID-19/epidemiology , Genetic Variation
7.
PLoS Pathog ; 18(9): e1010876, 2022 09.
Article in English | MEDLINE | ID: covidwho-2054395

ABSTRACT

The SARS-CoV-2 Delta Variant of Concern is highly transmissible and contains mutations that confer partial immune escape. The emergence of Delta in North America caused the first surge in COVID-19 cases after SARS-CoV-2 vaccines became widely available. To determine whether individuals infected despite vaccination might be capable of transmitting SARS-CoV-2, we compared RT-PCR cycle threshold (Ct) data from 20,431 test-positive anterior nasal swab specimens from fully vaccinated (n = 9,347) or unvaccinated (n = 11,084) individuals tested at a single commercial laboratory during the interval 28 June- 1 December 2021 when Delta variants were predominant. We observed no significant effect of vaccine status alone on Ct value, nor when controlling for vaccine product or sex. Testing a subset of low-Ct (<25) samples, we detected infectious virus at similar rates, and at similar titers, in specimens from vaccinated and unvaccinated individuals. These data indicate that vaccinated individuals infected with Delta variants are capable of shedding infectious SARS-CoV-2 and could play a role in spreading COVID-19.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
8.
Nat Commun ; 13(1): 4717, 2022 08 11.
Article in English | MEDLINE | ID: covidwho-1991591

ABSTRACT

Two years after the emergence of SARS-CoV-2, there is still a need for better ways to assess the risk of transmission in congregate spaces. We deployed active air samplers to monitor the presence of SARS-CoV-2 in real-world settings across communities in the Upper Midwestern states of Wisconsin and Minnesota. Over 29 weeks, we collected 527 air samples from 15 congregate settings. We detected 106 samples that were positive for SARS-CoV-2 viral RNA, demonstrating that SARS-CoV-2 can be detected in continuous air samples collected from a variety of real-world settings. We expanded the utility of air surveillance to test for 40 other respiratory pathogens. Surveillance data revealed differences in timing and location of SARS-CoV-2 and influenza A virus detection. In addition, we obtained SARS-CoV-2 genome sequences from air samples to identify variant lineages. Collectively, this shows air sampling is a scalable, high throughput surveillance tool that could be used in conjunction with other methods for detecting respiratory pathogens in congregate settings.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Minnesota/epidemiology , RNA, Viral/genetics , SARS-CoV-2/genetics , Wisconsin/epidemiology
9.
Gigascience ; 112022 05 28.
Article in English | MEDLINE | ID: covidwho-1873910

ABSTRACT

BACKGROUND: The Syrian hamster (Mesocricetus auratus) has been suggested as a useful mammalian model for a variety of diseases and infections, including infection with respiratory viruses such as SARS-CoV-2. The MesAur1.0 genome assembly was generated in 2013 using whole-genome shotgun sequencing with short-read sequence data. Current more advanced sequencing technologies and assembly methods now permit the generation of near-complete genome assemblies with higher quality and greater continuity. FINDINGS: Here, we report an improved assembly of the M. auratus genome (BCM_Maur_2.0) using Oxford Nanopore Technologies long-read sequencing to produce a chromosome-scale assembly. The total length of the new assembly is 2.46 Gb, similar to the 2.50-Gb length of a previous assembly of this genome, MesAur1.0. BCM_Maur_2.0 exhibits significantly improved continuity, with a scaffold N50 that is 6.7 times greater than MesAur1.0. Furthermore, 21,616 protein-coding genes and 10,459 noncoding genes are annotated in BCM_Maur_2.0 compared to 20,495 protein-coding genes and 4,168 noncoding genes in MesAur1.0. This new assembly also improves the unresolved regions as measured by nucleotide ambiguities, where ∼17.11% of bases in MesAur1.0 were unresolved compared to BCM_Maur_2.0, in which the number of unresolved bases is reduced to 3.00%. CONCLUSIONS: Access to a more complete reference genome with improved accuracy and continuity will facilitate more detailed, comprehensive, and meaningful research results for a wide variety of future studies using Syrian hamsters as models.


Subject(s)
Chromosomes, Mammalian , Mesocricetus , Animals , Chromosomes, Mammalian/genetics , Genome , High-Throughput Nucleotide Sequencing/methods , Mesocricetus/genetics , Whole Genome Sequencing
10.
Sci Transl Med ; 14(657): eabm4908, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1846321

ABSTRACT

The SARS-CoV-2 B.1.621 (Mu) variant emerged in January 2021 and was categorized as a variant of interest by the World Health Organization in August 2021. This designation prompted us to study the sensitivity of this variant to antibody neutralization. In a live virus neutralization assay with serum samples from individuals vaccinated with the Pfizer/BioNTech or Moderna mRNA vaccines, we measured neutralization antibody titers against B.1.621, an early isolate (spike 614D), and a variant of concern (B.1.351, Beta variant). We observed reduced neutralizing antibody titers against the B.1.621 variant (3.4- to 7-fold reduction, depending on the serum sample and time after the second vaccination) compared to the early isolate and a similar reduction when compared to B.1.351. Likewise, convalescent serum from hamsters previously infected with an early isolate neutralized B.1.621 to a lower degree. Despite this antibody titer reduction, hamsters could not be efficiently rechallenged with the B.1.621 variant, suggesting that the immune response to the first infection is adequate to provide protection against a subsequent infection with the B.1.621 variant.


Subject(s)
COVID-19 , Viral Envelope Proteins , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Membrane Glycoproteins/genetics , Neutralization Tests , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Viral Envelope Proteins/genetics , COVID-19 Serotherapy
11.
J Biomol Tech ; 32(3): 228-275, 2021 09.
Article in English | MEDLINE | ID: covidwho-1687373

ABSTRACT

As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.


Subject(s)
COVID-19 , Nucleic Acid Amplification Techniques , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Humans , Molecular Diagnostic Techniques , Pandemics , RNA, Viral , SARS-CoV-2/isolation & purification
12.
J Biomol Tech ; 32(3): 137-147, 2021 09.
Article in English | MEDLINE | ID: covidwho-1626499

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-CoV-2 RNA. From July 16, 2020, to November 19, 2020, surveillance samples (n = 4704) were collected from volunteers and tested for SARS-CoV-2 at 5 sites. Twenty-one samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, whereas 8 tested negative for SARS-CoV-2 RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We estimated the false-negative rate of the RT-LAMP assay only from July 16, 2020, to September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or fewer and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP-negative pools (2493 total samples) testing positive in the more-sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and that can effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing modalities.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , Sensitivity and Specificity
13.
Open Forum Infect Dis ; 8(11): ofab518, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1528171

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has had high incidence rates at institutions of higher education (IHE) in the United States, but the transmission dynamics in these settings are poorly understood. It remains unclear to what extent IHE-associated outbreaks have contributed to transmission in nearby communities. METHODS: We implemented high-density prospective genomic surveillance to investigate these dynamics at the University of Michigan and the surrounding community during the Fall 2020 semester (August 16-November 24). We sequenced complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from 1659 individuals, including 468 students, representing 20% of cases in students and 25% of total cases in Washtenaw County over the study interval. RESULTS: Phylogenetic analysis identified >200 introductions into the student population, most of which were not related to other student cases. There were 2 prolonged student transmission clusters, of 115 and 73 individuals, that spanned multiple on-campus residences. Remarkably, <5% of nonstudent genomes were descended from student clusters, and viral descendants of student cases were rare during a subsequent wave of infections in the community. CONCLUSIONS: The largest outbreaks among students at the University of Michigan did not significantly contribute to the rise in community cases in Fall 2020. These results provide valuable insights into SARS-CoV-2 transmission dynamics at the regional level.

14.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750514

ABSTRACT

Evidence-based public health approaches that minimize the introduction and spread of new SARS-CoV-2 transmission clusters are urgently needed in the United States and other countries struggling with expanding epidemics. Here we analyze 247 full-genome SARS-CoV-2 sequences from two nearby communities in Wisconsin, USA, and find surprisingly distinct patterns of viral spread. Dane County had the 12th known introduction of SARS-CoV-2 in the United States, but this did not lead to descendant community spread. Instead, the Dane County outbreak was seeded by multiple later introductions, followed by limited community spread. In contrast, relatively few introductions in Milwaukee County led to extensive community spread. We present evidence for reduced viral spread in both counties, and limited viral transmission between counties, following the statewide Safer-at-Home public health order, which went into effect 25 March 2020. Our results suggest that early containment efforts suppressed the spread of SARS-CoV-2 within Wisconsin.

15.
AIDS Res Hum Retroviruses ; 38(5): 350-358, 2022 05.
Article in English | MEDLINE | ID: covidwho-1486408

ABSTRACT

The HIV Research for Prevention (HIVR4P) conference catalyzes knowledge sharing on biomedical HIV prevention interventions such as HIV vaccines, antibody infusions, pre-exposure prophylaxis, and microbicides in totality-from the molecular details and delivery formulations to the behavioral, social, and structural underpinnings. HIVR4P // Virtual was held over the course of 2 weeks on January 27-28 and February 3-4, 2021 as the coronavirus disease 2019 (COVID-19) pandemic continued to inflict unprecedented harm globally. The HIVR4P community came together with 1,802 researchers, care providers, policymakers, implementers, and advocates from 92 countries whose expertise spanned the breadth of the HIV prevention pipeline from preclinical to implementation. The program included 113 oral and 266 poster presentations. This article presents a brief summary of the conference highlights. Complete abstracts, webcasts, and daily rapporteur summaries may be found on the conference website (https://www.hivr4p.org/).


Subject(s)
AIDS Vaccines , Anti-HIV Agents , COVID-19 , HIV Infections , Pre-Exposure Prophylaxis , Anti-HIV Agents/therapeutic use , COVID-19/prevention & control , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/prevention & control , Health Services Research , Humans
16.
Emerg Infect Dis ; 27(11): 2776-2785, 2021 11.
Article in English | MEDLINE | ID: covidwho-1444021

ABSTRACT

University settings have demonstrated potential for coronavirus disease (COVID-19) outbreaks; they combine congregate living, substantial social activity, and a young population predisposed to mild illness. Using genomic and epidemiologic data, we describe a COVID-19 outbreak at the University of Wisconsin-Madison, Madison, Wisconsin, USA. During August-October 2020, a total of 3,485 students, including 856/6,162 students living in dormitories, tested positive. Case counts began rising during move-in week, August 25-31, 2020, then rose rapidly during September 1-11, 2020. The university initiated multiple prevention efforts, including quarantining 2 dormitories; a subsequent decline in cases was observed. Genomic surveillance of cases from Dane County, in which the university is located, did not find evidence of transmission from a large cluster of cases in the 2 quarantined dorms during the outbreak. Coordinated implementation of prevention measures can reduce COVID-19 spread in university settings and may limit spillover to the surrounding community.


Subject(s)
COVID-19 , Universities , Disease Outbreaks , Humans , SARS-CoV-2 , Wisconsin/epidemiology
17.
Clin Infect Dis ; 73(6): e1329-e1336, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1411883

ABSTRACT

BACKGROUND: Healthcare personnel (HCP) are at increased risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We posit that current infection control guidelines generally protect HCP from SARS-CoV-2 infection in a healthcare setting. METHODS: In this retrospective case series, we used viral genomics to investigate the likely source of SARS-CoV-2 infection in HCP at a major academic medical institution in the Upper Midwest of the United States between 25 March and 27 December 2020. We obtained limited epidemiological data through informal interviews and review of the electronic health record and combined this information with healthcare-associated viral sequences and viral sequences collected in the broader community to infer the most likely source of infection in HCP. RESULTS: We investigated SARS-CoV-2 infection clusters involving 95 HCP and 137 possible patient contact sequences. The majority of HCP infections could not be linked to a patient or coworker (55 of 95 [57.9%]) and were genetically similar to viruses circulating concurrently in the community. We found that 10.5% of HCP infections (10 of 95) could be traced to a coworker. Strikingly, only 4.2% (4 of 95) could be traced to a patient source. CONCLUSIONS: Infections among HCP add further strain to the healthcare system and put patients, HCP, and communities at risk. We found no evidence for healthcare-associated transmission in the majority of HCP infections evaluated. Although we cannot rule out the possibility of cryptic healthcare-associated transmission, it appears that HCP most commonly become infected with SARS-CoV-2 via community exposure. This emphasizes the ongoing importance of mask wearing, physical distancing, robust testing programs, and rapid distribution of vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Delivery of Health Care , Health Personnel , Humans , Retrospective Studies , United States/epidemiology
18.
PLoS Pathog ; 17(8): e1009849, 2021 08.
Article in English | MEDLINE | ID: covidwho-1369568

ABSTRACT

The emergence of divergent SARS-CoV-2 lineages has raised concern that novel variants eliciting immune escape or the ability to displace circulating lineages could emerge within individual hosts. Though growing evidence suggests that novel variants arise during prolonged infections, most infections are acute. Understanding how efficiently variants emerge and transmit among acutely-infected hosts is therefore critical for predicting the pace of long-term SARS-CoV-2 evolution. To characterize how within-host diversity is generated and propagated, we combine extensive laboratory and bioinformatic controls with metrics of within- and between-host diversity to 133 SARS-CoV-2 genomes from acutely-infected individuals. We find that within-host diversity is low and transmission bottlenecks are narrow, with very few viruses founding most infections. Within-host variants are rarely transmitted, even among individuals within the same household, and are rarely detected along phylogenetically linked infections in the broader community. These findings suggest that most variation generated within-host is lost during transmission.


Subject(s)
COVID-19/virology , Genetic Variation , SARS-CoV-2/genetics , Acute Disease , COVID-19/transmission , Evolution, Molecular , Genome, Viral , Humans , Phylogeny , SARS-CoV-2/pathogenicity , Time Factors
19.
Immunohorizons ; 5(6): 466-476, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1359325

ABSTRACT

Lasting immunity will be critical for overcoming COVID-19. However, the factors associated with the development of high titers of anti-SARS-CoV-2 Abs and how long those Abs persist remain incompletely defined. In particular, an understanding of the relationship between COVID-19 symptoms and anti-SARS-CoV-2 Abs is limited. To address these unknowns, we quantified serum anti-SARS- CoV-2 Abs in clinically diverse COVID-19 convalescent human subjects 5 wk (n = 113) and 3 mo (n = 79) after symptom resolution with three methods: a novel multiplex assay to quantify IgG against four SARS-CoV-2 Ags, a new SARS-CoV-2 receptor binding domain-angiotensin converting enzyme 2 inhibition assay, and a SARS-CoV-2 neutralizing assay. We then identified clinical and demographic factors, including never-before-assessed COVID-19 symptoms, that consistently correlate with high anti-SARS-CoV-2 Ab levels. We detected anti-SARS-CoV-2 Abs in 98% of COVID-19 convalescent subjects 5 wk after symptom resolution, and Ab levels did not decline at 3 mo. Greater disease severity, older age, male sex, higher body mass index, and higher Charlson Comorbidity Index score correlated with increased anti-SARS-CoV-2 Ab levels. Moreover, we report for the first time (to our knowledge) that COVID-19 symptoms, most consistently fever, body aches, and low appetite, correlate with higher anti-SARS-CoV-2 Ab levels. Our results provide robust and new insights into the development and persistence of anti-SARS-CoV-2 Abs.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/virology , Cohort Studies , Female , Hospitalization/statistics & numerical data , Humans , Immunoglobulin G/blood , Linear Models , Male , Middle Aged , Multivariate Analysis , Pandemics , SARS-CoV-2/physiology , Severity of Illness Index , Time Factors
20.
Clin Infect Dis ; 73(Suppl 1): S45-S53, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1315688

ABSTRACT

BACKGROUND: High-frequency, rapid-turnaround severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing continues to be proposed as a way of efficiently identifying and mitigating transmission in congregate settings. However, 2 SARS-CoV-2 outbreaks occurred among intercollegiate university athletic programs during the fall 2020 semester, despite mandatory directly observed daily antigen testing. METHODS: During the fall 2020 semester, athletes and staff in both programs were tested daily using Quidel's Sofia SARS Antigen Fluorescent Immunoassay, with positive antigen results requiring confirmatory testing with real-time reverse-transcription polymerase chain reaction. We used genomic sequencing to investigate transmission dynamics in these 2 outbreaks. RESULTS: In the first outbreak, 32 confirmed cases occurred within a university athletics program after the index patient attended a meeting while infectious, despite a negative antigen test on the day of the meeting. Among isolates sequenced from that outbreak, 24 (92%) of 26 were closely related, suggesting sustained transmission following an initial introduction event. In the second outbreak, 12 confirmed cases occurred among athletes from 2 university programs that faced each other in an athletic competition, despite receipt of negative antigen test results on the day of the competition. Sequences from both teams were closely related and distinct from viruses circulating in the community for team 1, suggesting transmission during intercollegiate competition in the community for team 2. CONCLUSIONS: These findings suggest that antigen testing alone, even when mandated and directly observed, may not be sufficient as an intervention to prevent SARS-CoV-2 outbreaks in congregate settings, and they highlight the importance of vaccination to prevent SARS-CoV-2 outbreak in congregate settings.


Subject(s)
COVID-19 , Sports , Humans , Immunologic Tests , SARS-CoV-2 , Universities
SELECTION OF CITATIONS
SEARCH DETAIL